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Lattice Indexing for Spoken Term Detection
Doğan Can, Student Member, IEEE, and Murat Saraçlar, Member, IEEE

Abstract—This paper considers the problem of constructing
an efficient inverted index for the spoken term detection (STD)
task. More specifically, we construct a deterministic weighted
finite-state transducer storing soft-hits in the form of (utterance
ID, start time, end time, posterior score) quadruplets. We propose
a generalized factor transducer structure which retains the time
information necessary for performing STD. The required infor-
mation is embedded into the path weights of the factor transducer
without disrupting the inherent optimality. We also describe how
to index all substrings seen in a collection of raw automatic speech
recognition lattices using the proposed structure. Our STD in-
dexing/search implementation is built upon the OpenFst Library
and is designed to scale well to large problems. Experiments on
Turkish and English data sets corroborate our claims.

Index Terms—Factor automata, lattice indexing, speech re-
trieval (SR), spoken term detection (STD), weighted finite-state
transducers.

I. INTRODUCTION

T HE ever-increasing availability of vast multimedia
archives calls for solutions to efficiently index and search

them. Speech retrieval (SR) is a key information technology
which integrates automatic speech recognition (ASR) and
information retrieval to provide large scale access to spoken
content. In an ideal SR setup, the ASR component would
accurately convert speech to text and text retrieval methods
would be applied on the recognition output. Unfortunately,
state-of-the-art ASR systems are far from being reliable when
it comes to transcribing unconstrained speech recorded in
uncontrolled environments. Considering the heterogeneous
nature of the large spoken databases, it is no surprise that SR
research is mainly about compensating for ASR deficiencies.

In a realistic SR scenario, the end-user should be able to per-
form open-vocabulary search over a large collection of spoken
documents in a matter of seconds. Therefore, the speech corpus
must be indexed prior to search without the advance knowledge
of the query terms. This is a challenging task. In text retrieval,
the corpus is exact in the sense that it is known whether a partic-
ular word occupies a particular position in a document. In SR,
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however, the corpus is the output of the ASR component which
is inherently inexact. As a consequence, speech indexers have
to deal with the fact that any query word may occur anywhere
in a given corpus of spoken documents.

Indexing ASR lattices, instead of the best ASR hypothesis, is
a widely used SR method [1]–[3] for dealing with low quality
ASR output. By assigning a probability to whether a string oc-
cupies a particular position in a spoken document (given the
ASR lattice), we can significantly increase the recall rates for
in-vocabulary (IV) query terms. Sub-word indexing, another
well-studied SR method [1], [3]–[5], enables the retrieval of
out-of-vocabulary (OOV) query terms by performing the search
at the sub-word level. While being crucial for high-performing
SR systems, these methods bring in significant processing and
storage overhead, and hence necessitate space and search-time
efficient implementations.

ASR lattices carry a large amount of connectivity information
which is hard to capture with standard text retrieval systems. In
[1], the authors propose an exact approach that constructs an
inverted index from raw ASR lattices while storing the full con-
nectivity information. They outline a method for exact calcula-
tion of n-gram expected counts from input lattices. In [2], this
exact approach is employed in a more general indexing frame-
work which offers optimal search complexity for the spoken
utterance retrieval (SUR) task. Recent SR approaches [4], [6],
[7] tend to discard most of the connectivity information present
in the lattices and resort to approximate lattice representations,
such as confusion networks (CNs) and position specific pos-
terior lattices (PSPLs). These approaches argue that raw lat-
tices contain a great deal of redundancy for SR applications and
that exact inversion methods lack the proximity information re-
quired for relevance ranking.

In this paper, we consider the problem of constructing an
exact inverted index for ASR lattices with time information, i.e.,
we index all substrings seen in the lattices along with their time
alignments and posterior probabilities. Since the number of sub-
strings is exponential in data size, in general it is infeasible to
maintain an exact index with constant search complexity, e.g.,
a simple hash table keyed on substrings. Keeping a single word
or n-gram index, on the other hand, is suboptimal since 1) such
an index can not answer whether a substring actually matches
a partial path in a lattice and 2) substring occurrence probabili-
ties have to be approximated using the probabilities assigned to
individual words or n-grams. Then, the challenge is to come up
with an exact index structure which will efficiently store all sub-
string occurrences while keeping the search complexity linear in
the query length.

In the following sections, we generalize the index structure
of [2] to accommodate the timing information and employ it in
the spoken term detection (STD) task. The proposed structure
is a general deterministic sequence index which retains auxil-
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iary weight information about lattice nodes, e.g., node timings
in the case of STD. We provide retrieval experiments with IV
query sets and show that the proposed method is effective for
both word-based and phonetic indexing. Section II gives a brief
review of relevant works that lead up to the current study. In
Section III, we introduce the definitions and terminology used
throughout the paper. Section IV describes the construction of
the proposed inverted index structure from raw ASR lattices.
Section V details our ASR architecture and the data used in ex-
periments. Section VI provides the STD experiments evaluating
the performance of the proposed index structure over a large
data set. Finally, in Section VII, we summarize the advantages
of the proposed structure and discuss future directions.

II. RELATED WORK

ASR hypotheses are typically stored in the form of weighted
directed acyclic graphs known as lattices. Using weighted fi-
nite-state transducers (WFSTs) [8] to represent ASR lattices has
much appeal due to the general-purpose search, optimization
and combination algorithms supplied by the WFST framework.
The problem of indexing and searching a set of lattices in WFST
form can be posed as an extension to the extensively studied
problem of searching for patterns in a collection of text docu-
ments [9], [10]. An efficient solution [11] to the latter problem
makes use of a structure known as the factor transducer [12].
A factor transducer (FT) is an inverted index of the set of sub-
strings (factors) of the set of strings comprising a document. It
is a very efficient sequence index and is suitable for SR applica-
tions where exact sequence matches are desired. SUR and STD
are two such SR applications which aim to find respectively the
utterances and the time intervals in those utterances that contain
the exact sequence of query words.

In [2], the FT structure is extended to indexing weighted fi-
nite-state automata and employed in the SUR task. In this con-
text, the FT stores soft-hit indices in the form of (utterance ID,
expected count) pairs. Each successful FT path encodes a factor
appearance. Input labels of each such path carry a factor, output
labels carry the utterance ID and path weight gives the expected
count of the factor in the corresponding utterance. Expected
term counts, mere generalizations of the traditional term fre-
quencies, provide a good relevance metric for the SUR task.
Being a deterministic automaton (except final transitions), the
FT offers a search complexity linear in the sum of the query
length and the number of utterances in which the query term
appears.

In the STD 2006 Evaluation Plan [13], NIST defines the STD
task as finding all of the occurrences of each given term—a se-
quence of words spoken consecutively—in a large corpus of
speech material. Since it is required to find the exact locations in
time, ideally an inverted index for STD should provide soft-hits
as (utterance ID, start time, end time, relevance score) quadru-
plets. In [14], the FT is utilized in a two-stage STD system
which performs utterance retrieval followed by time alignment
over the audio segments. This two-stage STD strategy is prob-
lematic: 1) it requires a costly alignment operation which is
performed online and 2) the index stores within utterance ex-
pected term counts which are not direct relevance measures for

STD since a query term may appear more than once in an utter-
ance. In [15], we presented a method to obtain posterior prob-
abilities over time intervals instead of expected counts over ut-
terances along with a modified factor transducer (MFT) struc-
ture which stores (utterance ID, start time, end time, posterior
probability) quadruplets. The MFT stores the timing informa-
tion on the output labels and allows to perform the STD task
in a single step greatly reducing the time spent for online re-
trieval. Furthermore, posterior probabilities provide a direct rel-
evance metric for STD solving the second issue of the two-stage
strategy. On the flip side, the MFT has its own deficiencies:
1) search complexity is suboptimal since the index is non-de-
terministic—timing information is on the arc labels—and 2)
timing information has to be quantized to control the level of
non-determinism.

III. PRELIMINARIES

In the following subsections, we first introduce the general
algebraic notion of a semiring [16], [17] along with semirings
widely used in text and speech processing [8]. Then we recap
the relevant string and automata definitions and terminology [2],
[8], [17] used throughout the paper.

A. Semirings

Definition 1: A monoid is a triple , where is a
closed associative binary operator on the set , and is the
identity element for . A monoid is commutative if is com-
mutative.

Definition 2: A semiring is a 5-tuple , where
is a commutative monoid, is a monoid,

distributes over is an annihilator for . A semiring is idem-
potent if .

Lemma 1: If is an idempotent semiring, then
the relation defined by

is a partial order over , called the natural order [18] over . It
is a total order if and only if the semiring has the path property:

or .
Definition 3: An idempotent semiring is to-

tally ordered if its natural order is a total ordering.
In speech processing, two semirings are of particular impor-

tance. The log semiring is defined as

where ,
along with the conventions and . is
isomorphic to the familiar real or probability semiring

via the negative-log morphism. The tropical semiring is defined
as
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where the -convention is used for the tropical addition. Note
that is idempotent and the natural order over

is a total order, the usual order of real numbers [18]. Alterna-
tively one can use the -convention to obtain another idem-
potent semiring

over which the natural order is another total order, this time the
reverse order of real numbers.

Section IV frequently employs special semiring structures de-
fined on the Cartesian product of ordered sets. As a matter of
fact, our index structure itself is a weighted transducer over the
lexicographic semiring of three tropical semirings.

Definition 4: The product semiring of two partially
ordered semirings and

is defined as

where and are component-wise operators, e.g.,
:

. The natural order over , given by

defines a partial order, known as the product order, even if
and are totally ordered.

Definition 5: The lexicographic semiring of two partially or-
dered semirings and is defined as

where is a component-wise multiplication operator and
is a lexicographic priority operator,

Unlike , the natural order over , given by

or
and

defines a total order, known as the lexicographic order, when
and are totally ordered.

More generally, one can define the product and lexicographic
orders (or semirings) on the Cartesian product of ordered sets.
Suppose is an -tuple of sets, with respec-
tive total orderings . The product order
of is defined as

Similarly, the lexicographic order of is
defined as

That is, for one of the terms and all the preceding
terms are equal.

We should also note that product (or lexicographic) semiring
on can be recursively defined using the asso-
ciativity of (or ) operator

B. Weighted Finite-State Automata

Definition 6: A weighted finite-state transducer over a
semiring is an 8-tuple where:

is the finite input alphabet; is the finite output alphabet;
is a finite set of states; is the set of initial states;
is the set of final states;
is a finite set of arcs; is the initial weight function;
and is the final weight function.

A weighted finite-state acceptor is
defined in a similar way by simply omitting the output labels.
The size of an automaton1 is defined as .

Given an arc , we denote by its input label,
its output label, its weight, its origin or previous state,
and its destination or next state. A path is
an element of with consecutive arcs satisfying

. We extend and to paths by setting
and . The labeling and the weight functions

can also be extended to paths by defining
and . We also

extend to any finite set of paths by setting

We denote by the set of paths from to , by
the set of paths from to with input label and by

the set of paths from to with input label
and output label . These definitions can be extended

to subsets , by

A successful path in an automaton is a path from an initial
state to a final state. A symbol sequence is recognized by if
there exists a successful path labeled with on the input side.

is unambiguous if for any string there is at most
one successful path labeled with on the input side. Thus, an
unambiguous transducer defines a function.

1In finite automata literature, the terms automaton and acceptor are often used
interchangeably. Throughout this paper, we use the term automaton when we
do not differentiate between a transducer and an acceptor.
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Fig. 1. Weighted automata (a) � and (b) � over the real semiring � along
with the state timing lists � � ��� �� �� �� and � � ��� �� �� ��.

The weight associated by a transducer to any input-output
string pair is given by

and is defined to be when .

C. Factor Automata

Definition 7: Given two strings and in is a factor
(substring) of if for some and in . More
generally, is a factor of a language if is a factor
of some string . The factor automaton of a string

is the minimal deterministic finite-state acceptor recognizing
exactly the set of factors of .

can be built in linear time and its size is linear in the
size of the input string [19], [20]. We denote by the
minimal deterministic acceptor recognizing the set of factors of
a finite acceptor , that is the set of factors of the strings recog-
nized by . A recent work [12] showed that the size of the factor
automaton is linear in and provided an algorithm for
the construction of in linear time.

IV. TIMED FACTOR TRANSDUCER OF WEIGHTED AUTOMATA

This section presents an algorithm for the construction of an
efficient timed index for a large set of speech utterances. We pro-
pose a new factor transducer structure, timed factor transducer
(TFT), which stores the timing information on the arc weights,
thereby solving the issues associated with the non-deterministic
factor transducer of [15]. For easy comparison, we follow the
development in [2].

We assume that for each speech utterance of the data-set
in consideration , a weighted automaton

over the log semiring with alphabet (e.g., phone or word
lattice output by ASR), and a list of state timings are given.
Fig. 1 gives examples of automata over the real semiring . The
problem consists of creating a timed index that can be used for
the direct search of any factor of any string accepted by these
automata. Note that this problem crucially differs from the clas-
sical text indexing problems in that the input data is uncertain.

Our index construction algorithm is based on general
weighted automata and transducer algorithms. The main idea
is that the timed index can be represented by a weighted fi-
nite-state transducer mapping each factor to 1) the set of

automata in which appears, 2) start-end times of the inter-
vals where appears in each automaton, and 3) the posterior
probabilities of actually occurring in each automaton in
the corresponding time interval. We start with preprocessing
each input automaton to obtain a posterior lattice in which
non-overlapping arc clusters are separately labeled. Then from
each processed input automaton we construct an intermediate
factor transducer which recognizes exactly the set of factors
of the input. We convert these intermediate structures into
deterministic transducers by augmenting each factor with a
disambiguation symbol and then applying weighted automata
optimization. Finally, we take the union of these deterministic
transducers and further optimize the result to obtain a deter-
ministic inverted index of the entire data-set. The following
sections detail the consecutive stages of the algorithm.

A. Preprocessing

When the automata are word/phone lattices output by an
ASR system, the path weights correspond to joint probabilities
assigned by the language and acoustic models. We can apply to

a general weight-pushing algorithm in the log semiring [21]
which converts these weights into the desired posterior
probabilities given the lattice. Since each input automaton
is acyclic, i.e., a lattice, the complexity of the weight-pushing
algorithm is linear in the size of the input .

The algorithm given by [2] generates a single index entry for
all the occurrences of a factor in an utterance. This is the de-
sired behavior for the SUR problem. In the case of STD, we
would like to keep separate index entries for non-overlapping
occurrences in an utterance since we no longer search for the ut-
terances but the exact time intervals containing the query term.
This separation can be achieved by clustering the arcs with the
same input label and overlapping time-spans. The clustering al-
gorithm is as follows. For each input label: 1) sort the collected
(start time, end time) pairs with respect to end times; 2) identify
the largest set of non-overlapping (start time, end time) pairs
and assign them as cluster heads; and 3) classify the rest of the
arcs according to maximal overlap. We effectively convert the
input automaton to a transducer where each arc carries a cluster
identifier on the output label. In other words, each (input label,
output label) pair of the transducer designates an arc cluster.
Note that the clustering operation does not introduce additional
paths, i.e., it simply assigns each arc to an arc cluster. Fig. 2
illustrates the application of the preprocessing algorithm to the
automata of Fig. 1.

B. Construction of the Timed Factor Transducer

Let denote an -free trans-
ducer over the log semiring obtained by applying the weight
pushing and clustering algorithms (of the previous section) to
the automaton . The output string associated by to each
input string it accepts gives the string of cluster identifiers. The
weight associated by to each input–output string pair can be
interpreted as the posterior probability of that pair for the utter-
ance given the models used to generate the automata. More
generally, defines an occurrence probability for each
string pair , where is the probability of
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Fig. 2. (a) � and (b) � over the real semiring obtained by applying the pre-
processing algorithm to the automata � and � in Fig. 1.

factor given . is simply the sum of the prob-
abilities of all successful paths in that contain as a
factor. For each state , we denote by the shortest
distance from the initial states to ( of the forward
probability) and by the shortest distance from to the final
states ( of the backward probability)

(1)

(2)

The shortest distances and can be computed for all
states in linear time since is acyclic [18].
Let denote the set of all paths (including partials) in . Then,

is given by

(3)

Note that since there is a unique occurrence of the factor pair
in the utterance is a proper posterior prob-

ability even when there are multiple occurrences of in .
Without the output symbols , (3) would yield the expected
count of in .

Let denote the timing of state and
denote the start/end time of the factor in . Then,

(4)

(5)

Equations (3)–(5) define the quantities we need to
store for each factor. Now, we want to construct an
index transducer which will map each factor to a

triplet. We do this by first
constructing a transducer which indexes each factor occurrence
separately, i.e., each path corresponds to a factor occurrence
and the weight of this path gives the corresponding (posterior
probability, start time, end time) triplet. To obtain the mapping
we are after, we optimize this transducer on the

Fig. 3. Construction of � from the weighted automaton � in Fig. 2(a) and
the state timing list � � ��� �� �� ��: after factor generation.

semiring so that overlapping factor occurrences are merged by
adding their posterior probabilities in with operation,
start times in with operation and end times in with

operation. After overlapping factors are merged, we no
longer need to work over , so we switch to the more
familiar semiring (equivalent of tropical semiring
on ) which allows pruning and shortest path operations.

From the weighted transducer over , and the state timing
list , one can derive a timed factor transducer over
in four steps.

1) Factor Generation. In the general case we index all of the
factors in the following way:
• Map each arc weight (see Section III-A):

• Create a unique initial state .
• Create a unique final state .
• , create two new arcs:

— an initial arc: ;
— and a final arc: .

2) Factor Merging. We merge the paths carrying the same
factor-pair by viewing the result of factor generation as
an acceptor, i.e., encoding input–output labels as a single
label, and applying weighted -removal, determinization
and minimization over the semiring. After the
overlapping factors are merged, we map the arc weights

3) Factor Disambiguation. We remove the cluster identifiers
on the non-final arcs and insert disambiguation symbols
into the final arcs. For each edge :
• if , then assign ;
• if , then assign .

4) Optimization. The result of factor disambiguation can
be optimized by viewing it as an acceptor and applying
weighted determinization and minimization over the

semiring.
Figs. 3 and 4 illustrate the TFT construction from a weighted

automaton and a list of state timings. Factor generation step
creates an intermediate factor transducer which maps exactly
the set of factors of to the utterance ID (possibly many
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Fig. 4. Construction of � from the weighted automaton � in Fig. 2(a) and the state timing list � � ��� �� �� ��: (a) after factor merging over��� �� ; (b)
after factor disambiguation; (c) after optimization over � � � � � .

times with different weights). During factor merging, overlap-
ping factor occurrences are reduced to a single path. Let de-
note the result of factor merging. It is clear from (3)–(5) that for
any factor

(6)

where denotes the concatenation of the string of cluster iden-
tifiers and the automaton identifier .

The intermediate transducer [Fig. 4(a)] is not deterministic
over the input labels. To make it so, we remove the cluster iden-
tifiers and augment each path with a disambiguation symbol
by modifying the final transitions . It is con-
venient to use the previous state (more precisely a symbol
derived from it) as this auxiliary disambiguation symbol in a
practical implementation, i.e., . After this operation
[Fig. 4(b)] each final transition carries the symbol of its origin
state as an input label. These symbols make sure that non-over-
lapping factors labeled with the same input string are kept sepa-
rate during optimization. The resulting transducer [Fig. 4(c)]
is deterministic over the input labels and includes the augmented
paths, i.e., each path in corresponds to an input–output factor
pair in .

The timed factor transducer [Fig. 5(a)] of the entire data-set
is constructed by:

• taking the union of individual TFTs:

• encoding the input-output labels of as a single label and
applying weighted -removal, determinization, and mini-
mization over the semiring;

• and finally defining as the transducer obtained after de-
coding the labels of and removing the disambiguation
symbols on the final transitions.

The final optimization step merges only the partial
paths since there is no successful path shared between

—each successful path has the unique au-
tomaton identifier on its final output label. The natural order of

, being a total order, allows pruning before or during
the final optimization if needed. Fig. 5(a) illustrates the fully
optimized TFT of the entire data-set. Even though this picture

suggests that the TFT is nothing more than a prefix tree, this is
not true in general.2 As a matter of fact, this is exactly why this
structure is a feasible index for a large collection of automata.
Unlike a prefix tree, by allowing multiple incoming arcs, we are
able to index exponentially many factors in a structure linear in
the size of the input lattices (see Sections III-C and VI-A).

C. Factor Selection

Instead of the above given method of indexing each and every
factor along with its time span and posterior probability, we can
utilize factor selection filters in WFST form to restrict, trans-
form or re-weight the index entries. [2] introduces various filters
that are applied at various stages of the algorithm. Each filter is
composed with some automaton, obtained in the course of the
algorithm, to achieve a specific filtering operation.

One such filter is a pronunciation dictionary which maps
words to phone sequences. This filter is applied to the word
lattices to obtain phonetic lattices. In our case, applying such a
filter warrants an update of the state timings accordingly.

Another example is a simple grammar which restricts the fac-
tors. This filter is applied after the factor generation step and
removes the factors that are not accepted by the grammar. We
utilize such a grammar to reject the silence symbol, i.e., factors
including the silence symbol are not indexed.

D. Search Over the Timed Factor Transducer

The user query is typically an unweighted string, but it can
also be given as an arbitrary weighted automaton . This covers
the case of Boolean queries or regular expressions which can be
compiled into automata. The response to a query is another
automaton obtained by:

• composing with on the input side [22] and projecting
the resulting transducer onto its output labels;

• removing the transitions and finally sorting with the
shortest-path algorithm.
is a simple acceptor. Each successful path in is a

single arc (from the initial state to one of the final states) which
carries an automaton identifier on its label , and a (

2Consider replacing � with a simple transducer which has two states �����,
a single arc ���	� �� �� �
 and the state timing list ��� ��. The resulting TFT (be-
fore removing the disambiguation symbols) would be the same as the transducer
in Fig. 4(c), except for an additional arc ����� �� ����� �
� �
.
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Fig. 5. (a) TFT � over � � � � � , (b) FT over �, and (c) MFT over �
obtained from the weighted automata and the state timing lists in Fig. 1. Output
labels on the non-final arcs of the MFT represent the associated time intervals,
i.e., “a:0-2” means there is an “a” from time 0 to 2.

posterior probability, start time, end time) triplet on its weight
. A simple traversal over in the arc order

gives results sorted with the natural order of . Note that
can be pruned before traversal to retain only the most likely

responses. The pruning threshold may be varied to achieve dif-
ferent operating points.

The full inverted index is search-time optimal since it is a
deterministic transducer except for the final transitions which

TABLE I
BREAKDOWN OF TBN DATABASE (IN HOURS)

have automaton identifiers on the output. Assuming we can ac-
cess any arc of (that originates from a given state and matches
a given input label) in constant time, the search complexity for
a string query is given as , where is the number
of results, i.e., the number of arcs in .

E. Comparison With the Factor Transducer and the Modified
Factor Transducer

For easy comparison, Fig. 5(b) and (c) gives the FT [2] and
the MFT [15] obtained from the automata of Fig. 1. Structurally,
the FT is very similar to the TFT. The major difference is that the
FT does not store any timing information. The MFT, on the other
hand, is quite different from both the FT and the TFT. Timing in-
formation is encoded in the output labels, i.e., each output label
on a non-final arc represents a time interval. In Section II, we
pointed out the issues related to both structures. The proposed
method alleviates the issues of the FT by indexing the timing
information and keeping separate entries for non-overlapping
factors—note the extra final transitions of the TFT. Issues of the
MFT, on the other hand, are resolved by embedding the timing
information into the arc weights. Once the cluster identifiers are
removed, the final TFT can be made fully deterministic except
for the final transitions. Also note that we no longer have the
quantization problem which was a by-product of keeping timing
labels.

V. EXPERIMENTAL SETUP

In this study, we present results on two different STD sys-
tems, one of them in Turkish and the other in English. Both sys-
tems utilize IBM’s Attila Speech Recognition Toolkit [23] and
our OpenFst [17] based STD tools. Following sections detail
the ASR training and STD experimentation data used in each
system.

A. Turkish Broadcast News (TBN) STD System

Boğaziçi University Speech Processing Group has been col-
lecting a large database of Turkish Broadcast News since 2006.
Currently, TBN database includes 350 hours of manually tran-
scribed speech data collected from one radio (VoA) and four TV
channels (CNN Türk, NTV, TRT1, TRT2). In this study, we used
non-overlapping subsets of the TBN database (given in Table I)
for building ASR systems and performing STD experiments.

Our STD system utilizes the T, H, and R subsets of the TBN
database for ASR training, ASR optimization and STD experi-
ments, respectively. This system is meant to mimic a realistic
scenario where a large database of spoken documents is in-
dexed and searched. R subset, which includes 1.2 M words over
163 hours of speech, constitutes a fairly large evaluation set for
speech retrieval experiments.

The ASR engine was built with the IBM Attila toolkit using
the T subset. It is a word-based system with a vocabulary of
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TABLE II
R-IV QUERY SET DECOMPOSITION

TABLE III
DRYRUN06-IV QUERY SET DECOMPOSITION (W.R.T. PHONETIC LENGTH)

200 K words. The language model (200 K word-based model
presented in [24]) was derived from the manual transcripts of
the T subset and a large text corpus of size 184 M words [25].
The WER of the ASR system on the H and R subsets are 25.9%
and 29.9%, respectively.

In STD experiments, we used the R-IV query set which was
selected from the reference transcriptions of the R subset. R-IV
query terms are confined to the ASR vocabulary. Table II gives
the decomposition of R-IV query set with respect to query
length.

B. English Broadcast News (EBN) STD System

This system uses standard data sets from NIST’s 2006
Spoken Term Detection Evaluation [13]. Experiments utilize
the Broadcast News subset of the STDDEV06 data set, which
includes 25 K words over 3 hours of speech, and the IV
(in-vocabulary) subset of the DRYRUN06 query set which
includes 1058 terms. Table III gives the decomposition of the
DRYRUN06-IV query set with respect to the phonetic query
length. The ASR engine is the one used by IBM during the
2006 NIST STD evaluations [4]. Architectural details of the
IBM research prototype ASR system can be found in [23]. The
WER of the ASR system on STDDEV06 data set is 12.7%.

VI. EXPERIMENTS

In this section, we provide experiments comparing three
STD schemes: Two-Stage Retrieval with FT [15], Retrieval
with MFT [15], and Retrieval with TFT. Our comparisons are
in terms of index size and average search time. We also analyze
the change of average search time w.r.t. query length (only for
the last two schemes).

For the experiments of this section, we first extracted a fairly
large word lattice (five back-pointers per word trace) for each
utterance. Then, we pruned the raw lattices with different loga-
rithmic beam widths and conducted the same set of experiments
for each beam width. We observed that for all STD schemes in
consideration, a beam width of 4 is ideal for actual system oper-
ation, i.e., minimal index size and search time, without incurring
a significant loss in retrieval performance. We should note that
there is no significant difference between the three STD schemes
as far as the term detection performance is concerned (Actual
Term Weighted Value [13] 0.81 for the word-based TBN system
and 0.80 for the word-based/phonetic EBN STD systems).

NIST STD 2006 Evaluation Plan requires the results to con-
tain no more than 0.5 s gap between the adjacent words of a

TABLE IV
NUMBER OF FACTORS AND INDEX SIZE VERSUS TOTAL LATTICE SIZE

(STDDEV06 DATA SET, BOLD COLUMN INDICATES BEAM WIDTH 4)

query term. We exploit this requirement by indexing only the
factors that do not contain such gaps. We process input lattices
to identify long gaps ( s) and use a silence symbol to mark
them. Then after the factor generation step, we employ a simple
restriction grammar to filter out the factors including the silence
symbol. Shorter gaps are mapped to symbols and removed
prior to index construction.

A. Index Size

In retrieval applications, index size is an important applica-
tion concern. Preferably, it should be as small as possible but
maybe even more importantly it should not grow exponentially
as the data size increases. In our case, the data size depends on
the total amount of speech and the beam width of ASR lattices
used in index construction. Table IV demonstrates how fast the
number of factors increases as we increase the beam width even
with a small data set like STDDEV06.

Fig. 6 plots the increase of index size w.r.t. the size of input
lattices—lattice beam increases from 1 to 10. As pointed out in
Section III-C, the size of factor automata are linear in the size
of input lattices. Fig. 6 demonstrates this linear dependence for
all structures in consideration. Note that MFT has the smallest
size at all beam widths. (For our data set it is even smaller than
the total size of input lattices!) While this may appear rather
unexpected—since FT carries much less information compared
to MFT—, we should not forget that MFT is not a determin-
istic machine. Before the final optimization step of the index
construction algorithm, there are much less common paths to
merge in the case of MFT due to the time labels. This leads to
a smaller final index since the lattice structure of the index is
largely preserved after determinization. The size difference be-
tween FT and TFT, on the other hand, can be attributed to two
key features of TFT: 1) storage of the time alignment informa-
tion on the path weights and 2) separation of non-overlapping
factors via clustering.

B. Search Time

The most important concern in a retrieval application is the
search time since search is usually performed online unlike
index construction. Table V gives the per query average search
times for a lattice beam of 4.

Due to the costly second stage, employing the FT in the STD
task results in two to three orders of magnitude slower search.
The MFT and the TFT give similar search time performances
as far as the whole query sets are concerned. Since most of the
query terms comprise of a single word, this behavior is not sur-
prising. Even though the MFT is not a deterministic machine,
it has a much smaller memory footprint compared to the TFT,
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Fig. 6. Index size versus total lattice size (TBN-R Data Set).

TABLE V
PER QUERY AVERAGE SEARCH TIMES (IN MILLISECONDS) (BEAM WIDTH 4)

TABLE VI
PER QUERY AVERAGE SEARCH TIMES (IN MILLISECONDS) W.R.T. QUERY

LENGTH (TBN-R DATA SET, R-IV QUERY SET, BEAM WIDTH 4)

and hence we obtain comparable search times. While non-deter-
minism does not really matter when the query is a single word, it
becomes more and more important as the queries get longer. Re-
call that the TFT has a search time complexity linear in the sum
of the query length and the number of results. The MFT, on the
other hand, has an average search time complexity linear in the
product of the query length and the number of results—worst
case complexity is exponential. Table VI gives per query av-
erage search times over the TBN-R data set w.r.t. query length.

First thing to notice about Table VI is that the MFT is faster
than the TFT only when the query is a single word. As the
query gets longer, the TFT becomes much faster due to its
deterministic structure. In the MFT, every distinct time align-
ment of a word leads to a new path to be traversed. Thus, each
path matching the beginning of the query has to be traversed
until a mismatch is found to determine the successful paths
matching the whole query. On the other hand, in the TFT, only
one arc—hence only one path—needs to be traversed at each
state until the single partial path matching the query is found.
After that, results are read from the final transitions leaving the
single destination state of that partial path.

Table VII gives per result average search times w.r.t. query
length over the TBN-R data set. Our search time analysis in
Section IV-D assumed that we could access any arc (given a

Fig. 7. Per result average search times versus phonetic query length (Phonetic
STDDEV06 Data Set, Phonetic DRYRUN06-IV Query Set, Beam Width 4).

TABLE VII
PER RESULT AVERAGE SEARCH TIMES (IN MILLISECONDS) W.R.T. QUERY

LENGTH (TBN-R DATA SET, R-IV QUERY SET, BEAM WIDTH 4)

state and a label) at constant time. However, our OpenFst based
implementation keeps a list of arcs for each state rather then
a hash map, i.e., access time is , where represents
the average out-degree. Even though it is not possible to ob-
serve an exact linear dependence on the query length, we can
clearly observe the difference between the two methods. Fig. 7
is particularly interesting since it compares the two methods in
a phonetic STD setting. To obtain these graphs, we converted
the EBN word lattices into phone lattices using the pronuncia-
tion dictionary of the ASR system and constructed phonetic in-
dexes. Once mapped to their phonetic counterparts, we obtained
longer query strings for search. As demonstrated by the graphs
of Fig. 7, in a sub-word scenario a deterministic index is crucial
for high performance.

VII. CONCLUSION

Efficient indexing of ASR lattices (word or sub-word level)
for STD is not a straightforward task. In this paper, we general-
ized the SUR indexing method of [2] by augmenting the index
with timing information and used the resulting structure to per-
form single-stage STD. Proposed index structure is determin-
istic; hence, the search complexity is linear in the query length.
As demonstrated by the comparisons given in Section VI-B,
single-stage STD schemes significantly improve the search time
over the two-stage scheme. We further analyzed the differences
between the single-stage methods and demonstrated that the
TFT significantly outperforms the MFT as the query length in-
creases. This fact becomes even more valuable in the case of
sub-word indexing due to longer query strings.

We presented the core index construction algorithm for the
general problem of indexing lattices, but it can also be used
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to index approximate structures like CNs or PSPLs. Since ap-
proximate structures include the posterior scores and the clus-
tering information by construction, we no longer need the pre-
processing step. The resulting index stores the timings/positions
of the nodes in the case of CNs/PSPLs.

Since the TFT inherently stores the proximity information
(by means of time alignments), it can be utilized in other SR
applications like spoken document retrieval. Furthermore, since
the query can be any weighted automaton, we can search for
complex relations between query words without changing the
index. Any finite-state relation, e.g., a regular expression, can be
compiled into a query automaton and retrieved from the index.
We gave an example to this type of search in [15] where we
compiled weighted pronunciation alternatives into a query au-
tomaton to search the index for the OOV term occurrences. An-
other possibility is to relax the exact string match objective and
allow for gaps between query terms. Although this is not ex-
pected in STD, it might be useful in other speech retrieval appli-
cations. Implementing such a search is trivial in our framework
since we can easily modify the query automaton in such a way
that an arbitrary number of words can be inserted between ac-
tual query terms. Searching for arbitrary permutations of query
words, even allowing the insertion of other words in between
these permutations, is yet another trivial extension which can
be achieved without changing the index.
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